
Mathematical Cryptography

Muhammad Usman Akram

10030053

� Random Numbers

�Applications

�Desired Attributes

� Random Number Generators (RNGs)

� Pseudo Random Number Generators

(PRNGs)

� Empirical Statistical Tests

� Cryptographically Secure RNGs

� Lacking a definite plan, purpose, or

pattern

� A set where each of the elements

has equal probability of occurrence

� A sequence in which each term is

unpredictable -D. H. Lehmer (1951)

Any one who considers arithmetical methods of producing random

digits is, of course, in a state of sin.

John von Neumann

� True Random

� Show “true” randomness

� For Example: readings of a Geiger counter

� Pseudo Random (aka Deterministic Random)

� Have some repeating pattern but show certain

degree of randomness

�Quasi Random (aka Low-discrepancy)

� more uniformly than uncorrelated random

numbers

Application Most Suitable Generator

Lotteries and Draws TRNG

Games and Gambling TRNG

Random Sampling TRNG

Simulation and Modeling PRNG

Security (e.g., generation of keys) TRNG

�Uniform distribution

�Uncorrelated / Independent

� Efficiency / Portability

� Replicable

� Long Period (before pattern starts repeating)

Desired Attributes for RNGs

� True Random Number Generators
� Uses physical phenomena

� With Quantum-random properties
▪ Nuclear decay, Geiger counters exposed to radioactive

material

▪ Shot noise, a quantum mechanical noise source in electronic
circuits

� Without Quantum-random properties
▪ Snapshots of lava lamps

▪ Thermal noise from a resistor

▪ Atmospheric noise

� Pseudo Random Number Generators

� Using deterministic algorithms

▪ Need a “seed” for initialization

▪ Uses output of an iteration as input to next

�According to Pierre L'Ecuyer, a RNG is:

� RNG = (S, sO, T, U, G)

▪ S is a finite set of states

▪ so is initial state (or seed)

▪ Mapping T: S -> S is

transformation function

▪ U is finite set of output states

▪ G: S -> U is output finction

�Mid Square RNG

� Congruential RNGs
� Linear Congruential Generators
▪ Xi+1 = a*Xi + c mod m

� Lehmer / Park–Miller RNG
▪ Xi+1 = a*Xi mod m

▪ Multiplicative LCG (special case of LCG, with c = 0)

� Lagged Fibonacci RNG
� Xi = Xi-J + Xi-K mod m

� Blum Blum Shub RNG
▪ Xi+1 = Xi

2 mod m

� Xorshift class of RNGs designed by G.

Marsaglia

� repeatedly uses XOR on a number with a bit

shifted version of itself

�MWC

rn

b

a

ba

≥

 +
=

+=

1-n1-n

n

1-n1-nn

cx
c

mod)cx(x

� Cryptographic Random Number Generators

� Strong Hash functions

� Cryptographic algorithms

� “Random numbers fall mainly in the planes”
� Developed some of the most commonly used

methods for generating random numbers

� RNGs
▪ multiply-with-carry

▪ subtract-with-borrow

▪ Xorshift

▪ Mother

▪ KISS

� Ziggurat algorithm for generating normally distributed
random numbers

� Diehard RNG tests Battery (part of Marsaglia CDROM)

� KISS generator is an efficient pseudo-random
number generator by George Marsaglia and
Arif Zaman in 1993
� KISS consists of a combination of four sub-

generators each with 32 bits of state, of three
kinds:
▪ one linear congruential generator modulo 232

▪ one general binary linear generator over the vector
space GF(2)32

▪ two multiply-with-carry generators modulo 216, with
different parameters

The KISS generator, (Keep It Simple Stupid),

is designed to combine the two multiply-

with-carry generators in MWC with the 3-

shift register SHR3 and the congruential

generator CONG, using addition and

exclusive-or. Period about 2^123.

#define znew (z=36969*(z&65535)+(z>>16))

#define wnew (w=18000*(w&65535)+(w>>16))

#define MWC ((znew<<16)+wnew)

#define SHR3 (jsr^=(jsr<<17), jsr^=(jsr>>13), jsr^=(jsr<<5))

#define CONG (jcong=69069*jcong+1234567)

#define KISS ((MWC^CONG)+SHR3)

� Diehard tests are a battery of tests, developed by G. Marsaglia
� Includes, following tests

� Birthday spacings

� Overlapping permutations

� Ranks of matrices

� Monkey tests

� Count the 1s

� Parking lot test

� Minimum distance test

� Random spheres test

� The squeeze test

� Overlapping sums test

� Runs test

� The craps test

�Where we need random numbers

� Key generation

� Nonces

� One-time pads

� Salts in certain signature schemes

� Should satisfy “next-bit test”

� Should with stand “state compromise

extension”

Young man, in mathematics you don't understand things. You just get

used to them.

John von Neumann

•Hoffstein, Pipher, and Silverman, “An Introduction to Mathematical Cryptography”

•P. L'Ecuyer, “Random Number Generation”, Chapter 4 of the Handbook on Simulation,

Jerry Banks Ed., Wiley, 1998

•P. L'Ecuyer, “Uniform random number generators: a review”, 29th conference on Winter

simulation, IEEE, 1997

•G. Marsaglia, “The Marsaglia Random Number CDROM including the Diehard Battery of

Tests of Randomness”

•Greg Rose, “KISS: A Bit Too Simple”, Cryptology ePrint Archive, 2011

•http://en.wikipedia.org/wiki/Diehard_tests

•http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_gener

ator

•http://www.boallen.com/random-numbers.html

•http://en.wikipedia.org/wiki/Lehmer_random_number_generator

•http://www.iro.umontreal.ca/~lecuyer/papers.html

•http://www.h-online.com/security/news/item/Random-numbers-from-entangled-

atoms-995780.html

